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Abstract— Obstacle detection is a necessary task in every 
driving assistance system. An accurate obstacle segmentation is 
very important for further processing tasks that are using the 
obstacle ROI as input, like obstacle classification. This paper 
presents a real time approach for obstacle segmentation from 
traffic scenarios, based on superpixels clustering. A pair of 
gray levels stereo-cameras is used for scene image acquisition. 
The stereo-reconstruction uses a sub-pixel level optimized semi-
global matching (SORT-SGM) resulting in a very accurate 3D 
points map. Optical flow is computed using a Lukas-Kanade 
pyramidal approach. A novel paradigm integrating intensity, 
depth and optical flow information on superpixels is used for 
obstacle segmentation. SLIC superpixels are computed first 
based on intensity information. Multiple features are computed 
for each superpixel and used for clustering superpixels in 
obstacles. Depth cues are used for clustering the superpixels in 
obstacles and then optical flow information refines the 
obstacles clusters based on their motion. A qualitative and 
quantitative evaluation of the proposed approach and a 
comparison with other obstacle detection technique are finally 
presented. 

I. INTRODUCTION 

The number of intelligent vehicles is growing rapidly due 
to the technological possibilities that are into a continuous 
development process. Each intelligent vehicle is equipped 
with a driving assistance system (DAS). Usually it includes 
many safety functions like obstacle collision warning, lane 
departure warning, lane keeping assistance, speed keeping 
assistance, etc. There exists also a special category of 
intelligent vehicles in which the manufacturers built some 
protection parts that are automatically triggered in case of an 
imminent collision with pedestrians in order to reduce the 
risk of fatal injuries. Here comes the researchers’ motivation 
for building high accuracy obstacle detection modules. 
Basically, an obstacle detection module provides a region of 
interest (ROI) from traffic scene as input for a follow up 
module which usually classifies it into a specific obstacle 
class. It is very important that the ROI is computed as 
accurate as possible, because the features that characterize the 
obstacle are usually determined from its analysis and may 
further influence the classification. In computer vision and 
mainly in urban traffic scenarios, the depth computation of 
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each scene element is very important. This could be achieved 
by using stereo-cameras for images acquisition. We use two 
gray level cameras in a stereo setup due to their low cost and 
their specifications that are sufficient for achieving our goal. 
The stereo sensor offers us the possibility to accurately 
determine the depth distance value for the scene points and 
further to assign the optical flow vectors to them.  

 We present a novel real time approach for obstacle 
detection from urban traffic scenarios based on superpixel 
clustering. The superpixels are extracted with a modified 
SLIC approach using just the gray level information. We 
characterize each superpixel by multiple features based on 
intensity, depth and optical flow information. We cluster the 
superpixel into the corresponding obstacles using depth and 
road surface information. A refinement of the clusters, based 
on the optical flow information, is finally made. We also 
present an evaluation of our obstacle detection approach and 
we highlight its benefits in comparison with other obstacle 
detection technique. 

II. RELATED WORK 

Computer vision researchers carry out a lot of work for 
developing better and better solutions for obstacle detection 
from both monocular vision and stereo vision setup cameras.  

In the case of monocular vision, common features like 
color or gray intensities [1], symmetry [2], edges [3], 
shadows [4] and textures [5] are widely used for obstacle 
detection. Motion from optical flow [6] may also be 
computed for detecting moving obstacles by subtracting the 
ego motion of the vehicle. 

A stereo vision system acquires much more traffic scene 
information using at least two cameras. This allows the 
obstacle detection [7] to be done by analyzing both 
color/intensity and depth information [8] which considerably 
reduces the amount of noisy information. The approach is 
continued with a module that gathers the reconstructed points 
into obstacles by using a paradigm of points grouping [9] and 
density maps [10], followed by optical flow and motion 
computation for obstacle tracking [11]. A framework based 
on 3D points clouds representation is used for segmentation 
and classification of range image, which annotates class 
labels to the data clusters obtained through a graph-based 
segmentation, is presented in [12].  In [13], moving objects 
detection is achieved by using only spatial information in 
conjunction with an ego-motion estimation by sparse 
matched feature points. Another method that works well on 
sparse, noisy point clouds for semantic segmentation, based 
on 3D point clouds derived from ego-motion, is developed in 
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[14]. A technique for localization of scene elements through 
sparse stereovision, targeted at obstacle detection is described 
in [15]. Precise extraction of depth with robust and fast 
detection of moving objects in DAS is achieved in [16] with 
a powerful fusion of depth and motion information for image 
sequences taken from a moving observer. In contrast with 
other works that try to explicitly identify the obstacles, in 
[17], a computationally efficient approach to obstacle 
detection by a graph traversal on 2D grid of cells and 3D 
points elevation is presented. In [18], an obstacle detection 
system using stereo vision sensors is developed. The system 
uses feature matching, epipolar constraints and feature 
aggregation in order to robustly detect the initial 
corresponding pairs. After the initial detection, the system 
executes the tracking algorithm for the obstacles. In [19], a 
probabilistic representation of the uncertainty for stereo-
vision, which takes advantage of distance and disparity is 
proposed. This model is then applied to obstacle detection, 
using the occupancy grid framework. A similar algorithm for 
the detection of free space and obstacles in the traffic scene 
by analyzing the 3D reconstructed structures of an 
environment modeled using probabilistic volume polar grid 
map is presented in [20]. Stereo-vision based obstacle 
detection systems usually require a dense disparity map and, 
then, locate the obstacles according to the depth information. 
Computing the correspondence for each pixel is very time 
consuming. An algorithm which significantly reduces the 
complexity disparity calculations and locate the obstacles is 
presented in [21]. 

In order to obtain very good performance, the obstacle 
detection system must have as an input high quality stereo-
images with high quality stereo-reconstruction. We use the 
SORT-SGM stereo reconstruction [22] implemented on 
GPU, which has the advantage of providing a dense stereo 
depth map with high accuracy in a short processing time. The 
depth map is denser and more accurate than the one obtained 
with a local matching technique implemented on a classic 
hardware stereo-machine [23]. An approach for locally 
estimating the road parameters is presented in [24]. It 
assumes that the road is locally planar. This offers the 
possibility of dealing also with non-flat roads by splitting the 
geometry in a sequence of quasi-planar geometry parts. The 
method does not need lane markings extraction and takes into 
account the other relevant road information like texture, 
shadows, edges etc. Using this estimation, the system 
achieves a robust and accurate detection of the on road 
obstacles. In order to separate the road reconstructed points 
from the obstacle points, the road surface should be 
determined. We use the elevation maps approach presented in 
[25]. A quadratic road surface model is fitted to the region in 
front of the ego vehicle. This is followed by a region growing 
process driven by the 3D uncertainty model of the stereo 
sensor which refines the initial surface. 

Superpixels consist in local coherent clusters of pixels 
based on local image features. They are usually used for 
reducing the complexity of subsequent image processing 
tasks with applications in depth estimation, image 
segmentation, body model estimation and object localization. 
In our system we use a modified SLIC superpixels [26] 
approach that works great for gray levels images. 

III. SYSTEM OVERVIEW 

The obstacle detection system architecture with all its 
component modules and their interfaces (input and output) is 
depicted in Figure 1.  

 
Figure 1. Superpixel based obstacle detection system architecture 

 

Gray levels stereo traffic images with resolution of 
512x383 pixels are acquired. Stereo-reconstruction is 
performed using a semi-global optimized algorithm (SORT-
SGM) on a NVIDIA GeForce GTX 580 GPU having as input 
the two intensity images (undistorted and rectified). This 
results in an accurate and dense depth map that is essential in 
further processing. The depth map stores, for each 
reconstructed point, its distance from the stereo cameras 
setup. Optical flow vectors are computed considering “good-
features-to-track” [27] into the Lukas-Kanade pyramidal 
approach. The implementation is also made on the same 
GPU. SLIC superpixels are extracted based on the intensity 
information. They are used further in a feature extractor 
module that computes specific intensity, depth and motion 
features for each superpixel. A labeling procedure based on 
the superpixels adjacency and similarity is used for their 
grouping into separate obstacles. The road surface is 
computed using elevation maps built upon the 3D points 
map. The obstacle validation block filters the spurious 
clusters based on the size and considering their scene 
positioning (they must be on the road surface). A final 
refinement using a special closing operation on superpixels 
and optical flow for separating the erroneous groups of 
multiple objects is applied. All these blocks are described in 
details in the next chapters. 



  

IV. GRAY LEVELS SLIC SUPERPIXELS 

The first step in our superpixel based obstacle detection 
consists in the intensity image segmentation in a set of 
superpixels. We set a region of interest (ROI) over the input 
image (see Figure 2) where we compute the SLIC 
superpixels. Its position and size in pixels is defined by: 
(left=0, top=100, right=512, bottom=320). A number of 
N=2000 seeds are evenly distributed in the intensity image. 
The initial area (ns) of each superpixel cell (rectangular 
shape) is defined in equation (1). 

 
width( ) height( )ROI ROI

ns
N


   (1) 

Each seed is considered as being the center of a separate 
cluster Ci, with i=1…N containing a total of ns pixels around 
it. In order to obtain a good segmentation, all the seeds are 
then shifted into the lowest gradient magnitude location. We 
consider a scanning neighborhood of 3x3 pixels around the 
initial position. The Prewitt convolution kernel is used for 
computing the derivative on both x and y directions. The 
gradient magnitude is the sum of the two absolute 
derivatives. A k-means clustering algorithm is then applied in 
order to assign each ROI pixel to a cluster. This is an iterative 
approach and we considered that 10 iterations is enough for a 
good convergence. The centers of the clusters are defined by 
the average on each of the three components dimensions: x, y 
and gray level g. We define a distance metric d(P,Ck) from a 
point P inside the ROI to a cluster Ck assuming that the 
location (x, y) and the gray level g is known as in equation 
(2). 

 
 

Figure 2. Scene image with ROI and final refined superpixel cells 
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where ng is a weighting factor and considered ng=50. 

After this process it might appear few superpixels with 
very small size. They are merged to a larger superpixel 
neighbor. We consider a superpixel to be very small sized if 
its area is less than a quarter from ns. The final result is 
depicted in Figure 2. 

V. SUPERPIXEL FEATURES EXTRACTION 

We compute a set of features F for each superpixel 
previously determined. The area A counts the total number of 
image points in each superpixel. Inside each superpixel, the 
gray intensities are known in every point, the (X, Y, Z) world 

position of the reconstructed points and the OF vectors where 
the optical flow displacements (p, q) are computed. 
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MI is the mean intensity, MD is the mean depth, MedD is the 
median depth (Z), MedH is the median height (Y), MedX is 
the  median of horizontal points coordinates (X), CD is the 
3D points coverage, MMagOF, MAngOF define the 
magnitude and angle of the optical flow mean vector, COF 
is the optical flow vectors coverage (see equation (4)). 
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VI. SUPERPIXELS CLUSTERING 

Superpixels grouping is based on its feature vector F 
similarity. Our goal is to classify each superpixel in one of 
the three classes: road surface superpixel, obstacle superpixel 
and beyond driving area superpixel. Using the elevation map 
points flags (road surface points or above road surface 
points), we compute the road surface coverage of each 
superpixel (see equation (5)). 
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A superpixel is assigned to the road surface if Road>0.25 
and CD>0.30 (see Figure 3). 

We define the 3D region of interest volume as a 
rectangular parallelepiped delimited by the negation of 
MedD, MedX, MedH inequalities from the conditions set (6). 

 
Figure 3. Road surface superpixels (with magenta color) 



  

A superpixel is considered to be beyond the driving area 
if at least one of the following conditions is satisfied: 
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If the superpixels are neither road surface nor beyond 
driving area then they are considered to be obstacles 
superpixels. We implement a labeling algorithm, based on the 
vicinity of the superpixels and the features similarity between 
them. Each time when an unlabeled superpixel is found, a 
new label is generated. With a breadth first search approach 
this label is propagated to its neighbors and so on until no 
similar superpixels are found. The labeling results consist in a 
set of superpixel clusters. Each cluster is an obstacle 
candidate. In the next chapter, we describe the methodology 
for validating each obstacle candidate and for refining the 
valid obstacles. 

An unlabeled superpixel T is considered to be similar 
with a superpixel S that is already part of an obstacle, if both 
of the following conditions are satisfied: 

  0.55
Thr min( , )

T

S T S T
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
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The function Thr(d) defines a variable with depth 
threshold. Due to the sparseness and erroneous reconstructed 
points with depth, the function Thr(d) should have lower 
value for closer points and higher values for farther points. 
We empirically choose such a function (see equation (8)). Its 
plot is depicted in Figure 4. 
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Figure 4. Graph of Thr(d) function with the specified parameters 

 

In Figure 5 each superpixel is labeled as: road surface or 
beyond driving area or obstacle. Every different superpixels 
cluster is painted with a different random color. 

 
Figure 5. Clusters of superpixels (road surface with magenta color; beyond 
driving area with cyan color; candidate obstacles with other random colors) 

VII. OBSTACLES VALIDATION AND REFINEMENT 

Each superpixels cluster represents an obstacle candidate. 
We have to validate first these candidates in order to 
determine the real traffic obstacles and then to refine them for 
setting the final shape. 

In Figure 5, besides the road surface and beyond driving 
area superpixels, there are some spurious obstacle superpixels 
that appears due to the noise. Usually they appear individual 
or in clusters with very few members. There are also some 
clusters that are not lying on the road surface. All these false 
superpixels clusters should be removed. Every cluster is 
considered to be a valid obstacle only if all the three 
following conditions are satisfied: 
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where MY is the average of MedY for the containing obstacle 
superpixels: 
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In Figure 6 the validation of the obstacles superpixels 
clusters shown in Figure 5 is presented. A number of 8 valid 
obstacles can be seen. 

 
Figure 6. Valid obstacles superpixels (each obstacle with a different random 

color; background with color white) 
 

There are situations when some singular interior 
superpixel discontinuities appear on the obstacles surfaces. 
This is the result of erroneous features computation due to 
depth points’ measurement errors (see Figure 7a)). These 
small gaps are filled in by a special closing operation. We 
count the neighbors superpixel cells of each gap that already 
belongs to a valid obstacle. Then the gap superpixel is 
assigned to that obstacle that has the maximum number of 
superpixels in the neighborhood. The assignment is made 
only in the case when this maximum value is at least 4 
superpixels, otherwise it stays still. 

The final refinement consists in separating the erroneous 
grouped multiple obstacles in individual obstacles. This fact 
might appear when the distance between the obstacles is very 
small. The refinement is done by using the optical flow 
information. This is possible only in the case when there is a 
clear separation based on optical flow vectors. 



  

 
a) 

 
b) 

Figure 7. Valid obstacles superpixels: a) containing interior discontinuities – 
encircled with green; b) after applying the special closing operation 
 

 
a) 

 
b) 

Figure 8. a) Multiple obstacles erroneous grouped in one single obstacle;  
b) Optical flow vectors – opposite directions for the middle two obstacles 

 

Each optical flow vector OF is decomposed on the two 
perpendicular directions. The magnitude on the horizontal 
direction is p and on the vertical direction is q. According to 
equation (4) we have computed the mean magnitude and 
orientation of the optical flow vectors in each superpixel cell. 
A histogram of superpixels OF orientation is computed at 
each obstacle level. We split the orientation range of 0-360 
degrees in 30 bins evenly distributed. Each superpixel vote 
with 1 in the corresponding bin of the mean OF angle. If the 
histogram has more than one local maximum value, we are in 

the case when a group of multiple obstacles should be split 
into separate obstacles. In Figure 9, we have computed the 
histogram for the middle two obstacles (see Figure 8a) 
wrongly grouped in one large obstacle. We take a scanning 
interval of 7 bins centered on every bin location (from 0 to 
29). A bin location is considered to be a local maximum if it 
has the maximum number of votes in the scanning interval 
bins and it is above the average of the values with 10 votes. 
The local maxima are marked with red filled circles. A 
separation (threshold) is set in the middle distance from every 
two consecutive maximum values. These values are marked 
with vertical green lines. A multilevel thresholding procedure 
based on the separation angle values is applied in order to re-
label the superpixels. Each obstacle superpixel is re-assigned 
to a new obstacle determined by the corresponding closest 
local maximum. The result of optical flow based separation is 
depicted in Figure 10. 

 
Figure 9. Example of the angular OF histogram for two separable obstacles 

 

 
Figure 10. Optical flow based separation of the two middle obstacles 

 

VIII. EXPERIMENTAL RESULTS 

In this chapter we present and analyze the superpixels 
obstacle detection results achieved by using the multi-
paradigm of intensity, depth and optical flow information 
previously described. The method was tested on grayscale 
video sequences containing thousands of frames from 
different traffic scenarios. 

A qualitative evaluation on the obstacle detection results 
(see Figure 11) shows that the obstacles in front of the ego-
vehicle are very well detected. Miss-detections occur just in 
cases when there are no or poor reconstructed points on the 
obstacles surface. This cases are very rare due to the quality 
of the SORT-SGM stereo-reconstruction. In very crowded 
traffic scenarios, the obstacles that are very close and have 
similar intensity, depth and optical flow features might 
appear as a single obstacle (see Figure 11 bottom). 

A quantitative evaluation regarding the accuracy of the 
superpixel-based obstacle detection approach is presented in 
TABLE I. We manually labeled a series of ground truth 
images with precise obstacles surfaces. We checked the 
surfaces from our detection against the ground truth surfaces 



  

(see Figure 12). The results represents the intersection 
(common surface) of detected obstacles over the ground truth 
and vice-versa. 

 

TABLE I.   ACCURACY OF SUPERPIXELS BASED OBSTACLE DETECTION 

 Ground Truth  
  Obstacles Ground Truth Obstacles 

Surface (pixels) 13,546,170 15,724,170 16,562,700
Coverage percentage  86.2% 81.8% 

 

In comparison with another obstacle detection technique 
based on 3D points grouping and density maps which 
encapsulate them in bounding cuboids, this approach using 
superpixels and integrating intensity, depth and optical flow 
is clearly superior in finding the obstacles and in their shape 
segmentation (see Figure 13). The system runs real time, at 
about 20 fps, on an Intel i5 processor @ 3.33 GHz. 

IX. CONCLUSION 

A novel multi-paradigm that combines intensity, depth 
and optical flow information was used with SLIC 
superpixels for achieving accurate obstacle detection. We 
implemented the SLIC superpixels method on grayscale 
images, using a custom grouping metric which relays on 
both pixels position and intensity, obtaining very good 
results. We proposed also a novel distance metric and 
algorithm for clustering the superpixels in obstacles. The 
novel integration of optical flow in the superpixel obstacle 
detection system clearly refines the superpixels grouping 
results. Our superpixel-based obstacle detection system 
shows a superior segmentation than other stereo approaches 
that use only raw 3D points grouping which is important for 
other DAS’ modules that takes this as an input. 

 

   
 

   
 

   
Figure 11. Results of superpixels obstacle detection: left – grayscale scene image; right – superpixels obstacles, each obstacle with a different random color 

 

          
Figure 12. Evaluation method for one frame: left – obstacle detection result, right – manually labeled ground truth 



  

 

   
Figure 13. Comparison with other approach: left – obstacle detection based on 3D points grouping in cuboids; right – more accurate superpixels approach 
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